Summer Work Packet for MPH Math Classes
 Students going into Math 7
 Sept. 2018

Name:

This packet is designed to help students stay current with their math skills.

Each math class expects a certain level of number sense, algebra sense or graph sense in order to be successful in the course.

These problems need to be completed in the space provided, or a separate sheet of paper, by the first day of class. Be sure to show all work.

If you have any questions, please email Mrs. Meehan at dmeehan@mphschool.org .

> You will need a TI-84 calculator for this class.

Adding Fractions- Remember that you must have a common denominator to add fractions. You can work the problems across (horizontally) or up and down (vertically).
Example 1: $\frac{3}{4}+\frac{5}{6}=$
Example 2: $\frac{2}{3}=\frac{4}{6}$

$$
\begin{aligned}
& \frac{9}{12}+\frac{10}{12}= \\
& \frac{19}{12}=1 \frac{7}{12}
\end{aligned}
$$

$$
+\frac{1}{2}=\frac{3}{6}
$$

$$
\frac{7}{6}=1 \frac{1}{6}
$$

1. $2 \frac{1}{6}+3 \frac{5}{6}=$
2. $\frac{3}{4}$

$$
+\frac{4}{7}
$$

2. $3 \frac{2}{9}$

$$
+4 \frac{1}{6}
$$

6. $6 \frac{3}{8}$
$+2 \frac{3}{32}$
7. $4 \frac{7}{12}$
$+1 \frac{5}{8}$
8. $3 \frac{7}{10}$

$$
+2 \frac{4}{15}
$$

4. $5 \frac{1}{4}$

$$
+2 \frac{3}{10}
$$

8. $\frac{8}{9}$

$$
+\frac{8}{15}
$$

Subtracting Fractions- Remember that you must have a common denominator to subtract fractions. You can work the problems across (horizontally) or up and down (vertically).
Example 1: $\frac{3}{4}-\frac{5}{8}=$

$$
\frac{6}{8}-\frac{5}{8}=\frac{1}{8}
$$

Example 2: $\frac{2}{3}=\frac{10}{15}$
$\frac{-\frac{1}{5}=\frac{3}{15}}{\frac{7}{15}}$
9. $\frac{17}{21}-\frac{8}{21}=$
13. $3 \frac{3}{4}$
$-1 \frac{4}{9}$
10. $4 \frac{2}{9}$

$$
-3 \frac{1}{6}
$$

14. $5 \frac{3}{8}$
$-2 \frac{7}{10}$
15. $6 \frac{7}{12}$
$-2 \frac{5}{9}$
16. $6 \frac{7}{10}$
$-3 \frac{4}{5}$
17. $7 \frac{1}{4}$
$-3 \frac{3}{10}$
18. $4 \frac{5}{9}$
$-3 \frac{4}{5}$

Multiplying fractions: When you are multiplying fractions, you do not need a common denominator. You must first change any whole number or mixed number to an improper fraction. Remember when you are multiplying fractions it is easier to simplify first, if possible, and then multiply the numerators and multiply the denominators.

EXAMPLE: $\frac{24}{25} \times \frac{15}{28}=\frac{6}{5} \times \frac{3}{7}=\frac{18}{35}$
EXAMPLE: $4 \frac{2}{3} \times 15=\frac{14}{3} \times \frac{15}{1}=14 \times 5=70$
17. $\frac{2}{3} \times \frac{1}{2}=$
22. $\frac{1}{8} \times \frac{1}{3}=$
18. $6 \frac{3}{4} \times \frac{2}{9}=$
23. $8 \frac{3}{4} \times 7 \frac{1}{9}=$
19. $2 \frac{2}{27} \times 3 \frac{3}{8}=$
24. $\frac{16}{27} \times \frac{9}{28}=$
20. $18 \times \frac{4}{27}=$
25. $\frac{20}{33} \times 11=$
21. $6 \frac{3}{16} \times \frac{8}{27}=$
26. $\frac{42}{35} \times \frac{10}{21}=$

Dividing fractions: The rule for dividing fractions and mixed numbers is to first convert each number to a fraction (proper or improper). Then keep the first number the same, change the problem to multiplication and use the reciprocal of the second fraction. Now you can follow the rules from multiplication. Be sure your answer is in simplest form.

EXAMPLE: $3 \frac{3}{5} \div 2 \frac{4}{7}=\frac{18}{5} \div \frac{18}{7}=\frac{18}{5} \times \frac{7}{18}=\frac{7}{5}=1 \frac{2}{5}$
27. $\frac{27}{4} \div \frac{18}{5}=$
31. $\frac{9}{16} \div 3 \frac{3}{8}=$
28. $\frac{27}{4} \div \frac{18}{5}=$
32. $18 \div \frac{54}{7}=$
29. $\frac{2}{3} \div \frac{1}{2}=$
33. $6 \frac{3}{16} \div 18=$
30. $6 \frac{3}{4} \div 5 \frac{5}{8}=$
34. $8 \frac{3}{10} \div 7 \frac{1}{15}=$

Prime Factorization: Use a factor tree to find the prime factors of each number. Remember a prime factor is a number that has exactly 2 factors, 1 and itself.

EXAMPLE: 360

$$
\begin{gathered}
360 \\
\quad \times 10 \\
36 \times 9 \times 2 \times 5 \\
4 \times 2 \times 3 \times 3 \times 5 \\
\times---2^{3} \cdot 3^{2} \cdot 5
\end{gathered}
$$

35. 120
36. 80
37. 50
38. 200
39. 98
40. 48
41. 75
42. 64

Fill in the blank with >, < or = to make a true statement that compares the following decimals.
43. $3.230 _3.23$
44. $2.2 \quad 2.879$
45. $2.1 \quad 1.25$
46. $\quad 35.9 \quad 35.896$
47. $54.25 \ldots \quad 54.3$

Round each to the nearest whole number.
48.
6.3
49.
45.7
50. $\quad 98.5$
51. $\quad 555.10$

Round each number to the nearest tenth.
52. 0.54
53. 10.38
54. . 418
55. 9.99

Round each number to the nearest hundredth.
56. 0.4508
57. 4.782
58. . 7859
59. 5.679

Perform the indication operations. Follow the examples shown below.
Add: Line up the decimal points. $4.56+2.57+33.567+.2534$

$$
\begin{array}{r}
4.5600 \\
2.5700 \\
33.5670 \\
+\quad .2534 \\
\hline 40.9504
\end{array}
$$

You may insert zeros to help you
keep the columns lined up.

Subtraction: Line up the decimal points. 303.57-89.2534

$$
303.5700
$$

You may insert zeros to help you -89.2534
keep the columns lined up.
214.3166

Multiplication: Line up the numbers to multiply. COUNT up the places after the decimal point and mark off that many starting from the right.

Notice, .83 is less than 1 , so your answer is smaller
than the number you started with.
Division: Move the decimal point to the end of the number on the outside (divisor). Move the decimal point the same amount of places for the number inside (dividend) the division sign. Place the decimal point in the answer position (quotient). Then, divide.
$5 0 7 \div 7 . 8 \Rightarrow 7 . 8 \longdiv { 5 0 7 } \Rightarrow 7 8 \longdiv { 5 0 7 0 . } \Rightarrow 7 8 \longdiv { 5 0 7 0 . } \Rightarrow 7 8 \longdiv { 5 0 7 0 . }$

-468	-468
39	390
	-390

Add.
60. $\quad 72.32+27.68$
62. $572.01+21+.1$
61. $635.4+86.39$
63.
$1.234+62.3+32.32$

Subtract.
64. $45.5479-8.325$
65.
$83-26.4725$

Multiply

70. $.65 \times .34$
71. $202.0062-17.1$
72. $16.4-2.49$
73.

4.57×8.3
69. $7.058 \times .17$
71. 234.56×1000

Divide.
72. $\quad 103.5 \div 4.5$
74. $\quad 71.25 \div 7.5$
73. $23.52 \div .98$
75. $6308 \div 7.6$

Find a) the perimeter and b) the area of each shape.
76. A square with a side of 7 meters.

$$
\left(\mathrm{P}=4 \mathrm{~s} \quad \text { and } \quad \mathrm{A}=\mathrm{s}^{2}\right)
$$

77. A rectangle with width of $61 / 2$ inches and length of 14 inches. $(\mathrm{P}=2 \mathrm{l}+2 \mathrm{w}$ and $\mathrm{A}=\mathrm{lw})$
78. A circle of radius 8 cm . ($\mathrm{C}=2 \pi \mathrm{r}$ and $\mathrm{A}=\pi \mathrm{r}^{2}$)

79. A circle of diameter 12 mm (hint: $\mathrm{d}=2 \mathrm{r}$) $\left(\mathrm{C}=2 \pi \mathrm{r}\right.$ and $\left.\mathrm{A}=\pi \mathrm{r}^{2}\right)$

80. A triangle with height 22 mm and base 80 mm . ($\mathrm{A}={ }^{1 / 2} \mathrm{bh}$)

For the next 3 you can look up the area formulas or split the shapes into triangles and quadrilaterals.
81. Parallelogram

60 mm
82. Trapezoid

83. Trapezoid

Solve each. Show your work (you may use a proportion, if you would like).
84. One can of pineapple chunks is $\$ 2$. How many can you purchase for $\$ 10$?
85. One pound of seedless grapes is $\$ 1.89$. How much will three and a half pounds cost?
86. If 4 bunches of basil costs $\$ 11$, how much will one bunch cost?
87. If Spencer can drive 480 miles on 12 gallons of gasoline, how many miles per gallon does his car get?
88. Oh brother! I am so bored! Mr. Blather, my science teacher, is lecturing on the weather patterns in the Arctic Circle. YAWN! YAWN! To keep myself awake, I started doodling. I started with one hexagon, and then kept drawing larger and larger hexagons (see diagram). I must be really bored because I found myself wondering how many dots I would have altogether after the fiftieth (50th) hexagon. What's the answer? Show your work and explain in complete sentences how you thought about the problem.

89. I am thinking of a three-digit number. It is an odd multiple of 3 , and the product of its digits is 24 . It is larger than 225 . What are all the numbers of which I could be thinking? Show your work and explain in complete sentences how you thought about the problem.
90. What part of math do you like best? What part of math do you like the least?

HAVE A GREAT SUMMER!! I'm looking forward to seeing you in September!

