Summer Work Packet for MPH Math Classes

Students going into Algebra 2/Trig S Sept. 2021

Name: _____

This packet is designed to help students stay current with their math skills.

Each math class expects a certain level of number sense, algebra sense, and graph sense in order to be successful in the course.

These problems need to be completed in the space provided, or a separate sheet of paper, by the first week of class. Be sure to show all work.

If you have any questions, please email Ms. Ellerton at <u>aellerton@mphschool.org</u> or Mrs. Meehan at <u>dmeehan@mphschool.org</u>.

You will need a TI-84⁺ calculator for this class. (If you need to purchase a new calculator, please bring in the points off the packaging.)

Name

Solve each equation for the given variable. CHECK your answer.

1.
$$12x - 1 = 6x + 2$$

2.
$$4(3x-2) = 12x - 8$$

3.
$$4z = 2(1 + 2z)$$

4.
$$\frac{2x-1}{9} = \frac{x-2}{5}$$

<u>Graph</u> the following points on <u>graph paper</u>. Draw a <u>line</u> through the points. Find the slope of the line.

Label the coordinates of the <u>x-intercept</u> and <u>y-intercept</u>.

5. (5, 11) and (3, 7)

6. (-4, 8) and (-3, 4)

Write the equation of the line with the given information.

7. $m = \frac{1}{2}$ and going through the point (0, -3)

8. m = 5 and going through the point (-3, 4)

Graph the lines on graph paper. Find the slope and the v-intercept of each. Find the coordinates of the point of intersection. CHECK the point in both equations.

9.
$$y = 3x - 2$$
 and $y = \frac{1}{2}x + 3$

Intersection point: _____

RULES FOR SIMPLIFYING RADICALS (square roots)

$$a\sqrt{b} \cdot c\sqrt{d} = ac\sqrt{bd}$$

$$\frac{\sqrt{a}}{\sqrt{b}} = \sqrt{\frac{a}{b}}$$

$$a\sqrt{b} \cdot c\sqrt{d} = ac\sqrt{bd}$$
 $\frac{\sqrt{a}}{\sqrt{b}} = \sqrt{a/b}$ $\sqrt{a} \cdot \sqrt{a} = \sqrt{a^2} = |a|$

$$a\sqrt{b} + c\sqrt{b} = (a+c)\sqrt{b}$$

Remember, proper form for radicals means:

- a. No perfect square factor under the radical. For example, $\sqrt{45} = \sqrt{9} \cdot \sqrt{5} = 3\sqrt{5}$
- b. No fractions/decimals may be left under the radical. For example, $\sqrt{\frac{3}{4}} = \frac{\sqrt{3}}{\sqrt{4}} = \frac{\sqrt{3}}{2}$
- c. No radical may be left in the denominator of a fraction. For example,

$$\sqrt{\frac{3}{7}} = \frac{\sqrt{3}}{\sqrt{7}} = \frac{\sqrt{3}}{\sqrt{7}} \cdot \frac{\sqrt{7}}{\sqrt{7}} = \frac{\sqrt{21}}{7} \text{. Another example, } \frac{15\sqrt{75}}{20\sqrt{21}} = \frac{3\sqrt{25}\sqrt{3}}{4\sqrt{7}\sqrt{3}} = \frac{3\cdot5}{4\sqrt{7}} = \frac{3\cdot5\cdot\sqrt{7}}{4\sqrt{7}\sqrt{7}} = \frac{15\sqrt{7}}{28} \text{.}$$

Simplify each. Leave in best radical form. NO DECIMAL EQUIVALENTS.

$$10.\,\frac{\sqrt{49}}{\sqrt{25}}$$

11.
$$\sqrt{28}$$

12.
$$4\sqrt{75}$$

13.
$$7\sqrt{30} \cdot 2\sqrt{6}$$

14.
$$\sqrt{48} + \sqrt{27}$$

Use the distributive property to expand the product. Follow the example.

EXAMPLE:
$$(x + 4)(x - 11) = x^2 - 11x + 4x - 44 = x^2 - 7x - 44$$

15.
$$(x + 1) (x + 4)$$

16.
$$(x-3)(x-6)$$

17.
$$(3x-1)(3x+1)$$

18.
$$(2x + 5)(x - 8)$$

Factor each into the product of two binomials. Follow the example. EXAMPLE: $3x^2 + 7x - 6 = (3x - 2)(x + 3)$

19.
$$x^2 + 4x + 3$$

21.
$$x^2 - 12x + 36$$

20.
$$k^2 + 6k + 9$$

22.
$$t^2 - 25$$

Factor each and solve for x. Follow the example.

EXAMPLE:
$$x^2 + 5x - 6 = 0$$

$$\mathbf{x}^2 + \mathbf{5}\mathbf{x} - \mathbf{6} = \mathbf{0}$$

$$(\mathbf{x}+\mathbf{6})(\mathbf{x}-\mathbf{1})=\mathbf{0}$$

$$y + 6 = 0 OP (y - 1) = 0$$

$$x = -6 \qquad OR \quad x = 1$$

$$(x + 6) = 0$$
 OR $(x - 1) = 0$ One of the factors must equal 0

$$23. x^2 + 3x - 18 = 0$$

$$24. x^2 - 7x + 10 = 0$$

25.
$$x^2 + 25 = 10x$$

Simplify the following polynomials by combining like terms:

26.
$$2(x-5) + (5x+2) + (8x+1)$$

27.
$$(x-10) + 4(x+7) - 2(x+3)$$

28.
$$(9x^3 + 3x - 13) - (6x^2 - 5x) + (2x^3 - x^2 - 8x + 4)$$

Draw	and	label	a picture	then	write an	equation	to solve	the n	roblems.
Diaw	and	lauci	a picture	, шсп	write an	cquation	to sorve	une p	rootenis.

29. Two angles are supplementary. If the second angle is 30° more than twice the first angle, find the measure of each angle.

30. The lengths of the sides of parallelogram ABCD are AB = 2x + 5, BC = 5x - 4 and CD = 6x - 7. Find the value of x. What type of special parallelogram is ABCD?

31. The legs of a right triangle measure 16 and 30. Find the length of the hypotenuse.

32. In $\triangle ABC$, $\angle A = 3x - 20$, $\angle B = 6x + 15$, and $\angle C = x - 5$. Find the measure of the three angles.