Summer Work Packet for MPH Math Classes
 Students going into Geometry
 Sept. 2017

Name:

This packet is designed to help students stay current with their math skills.

Each math class expects a certain level of number sense, algebra sense and graph sense in order to be successful in the course.

These problems need to be completed in the space provided, or on a separate sheet of paper, by the first day of class. Be sure to show all work.

Students can expect this packet to be graded, and/or to have a test on this material during the first marking period. If you have any questions, please email Mrs. Sheffield at csheffield @mphschool.org, or Mrs. Meehan at dmeehan@mphschool.org.

Supplies List for Geometry
TI-84 or TI-84+ calculator
a three ring binder
$1 / 4$ " graph paper
pencils, (mechanical pencil preferred)
3 ring binder
3 ring binder pencil pouch
protractor
quality compass
Recommended compass - order online:
Mars Bow compass - 55140 WP Bow compass
(also available at Office Dealer for \$12.46.)
Compasses with a wheel between the arms are strongly preferred, as they prevent slippage, which is important for successful constructions.

Show all work! Do NOT round any answers. Write the answers as a fraction if the decimal is repeating or the calculator does not show the whole decimal.

Evaluate each expression. Find the answer and show your work. Remember Order of Operations: Grouping, Exponents, Multiplication and Division, then Addition and Subtraction, all from left to right.

1. $30-\frac{20-3(5)}{5}+4(2-6)^{2}=$
2. If $\mathrm{a}=5, \mathrm{~b}=-2$, and $\mathrm{c}=2 ; \quad \frac{2(a-c)}{b+4}=$

Translate into algebra.

3. Three times a certain number is half a different number.

Simplify. Show all your work. Remember, you need an LCD to add or subtract fractions.
4. $\frac{7}{9}-\frac{4}{5}=$
5. $\frac{6}{5}+2 \frac{5}{8}=$
6. $\frac{8}{9} \div \frac{2}{3}$
7. $\left(\frac{-5}{7}\right)\left(\frac{3}{10}\right)=$

Simplify each expression.
8. $6 \mathrm{~b}-2 \mathrm{c}-3 \mathrm{c}=$
9. $\left(n^{3}\right)\left(\mathrm{n}^{4}\right)=$
10. $\quad \frac{c^{50}}{c^{40}}=$
11. $\frac{12 a^{6}}{4 a}$

Solve each equation. Show all your work and CHECK!
12. $8 x=-3+7$
13. $4 h=-2(3 h+5)$

Check:
Check:
14. $18=-2 y$
15. $\frac{x}{-5}=3$

Check:
16. $\frac{2 x-8}{2}=6$

Check:
Check:
18. $-5(3-x)=3 x+1$

Check:

Solve each inequality and graph the solution on a number line. Show all your work. Remember, if you multiply or divide by a negative number you must switch the direction of the inequality sign.
19. $\mathrm{x}-(-4)>6$
20. $\frac{x}{-2}<7$
21. $9 n+3<3 n-15$

22. $3 n+5 \geq-1$

Graph the equation. Use a table or the slope-intercept method, $\mathbf{y}=\mathbf{m x}+\mathbf{b}$.
23. $y=-3 x+2$
slope: \qquad y -intercept: \qquad

Graph the inequality. Don't forget to shade and to show your check.
24. $\mathrm{y} \leq 2 \mathrm{x}-1$

Find the slope of the line containing the points.
25. $(-3,11)$ and $(2,5)$

Find the \mathbf{x}-intercept and y-intercept. Graph the points. Find the slope of the line through the points. Write the equation in slope-intercept $(y=m x+b)$ form.
26. $3 x-4 y=12$

Simplify the following expressions.
Example: $\mathbf{3}\left(\mathbf{m}^{2}+\mathbf{n}\right)-\mathbf{2}\left(\mathbf{3} \mathbf{m}^{2}-\mathbf{4 n}\right)=\mathbf{3} \mathbf{m}^{2}+\mathbf{3 n}-\mathbf{6} \mathbf{m}^{2}+\mathbf{8 n}=-3 \mathbf{m}^{2}+\mathbf{1 1} \mathbf{n}$
27.
$\left(3 x^{2}+4 x-5 x y\right)+\left(-7 x^{2}+6 x-5 x y\right)$
28. $\left(5 y^{3}-3 y+4\right)+\left(2 y^{2}+6 y-4 y^{3}\right)-\left(9 y^{2}-6+2 y^{3}\right)$
29. $\left(-2 x^{7}\right)\left(3 x^{4}\right)$
30. $\frac{12 x^{3} y^{4} z^{5}}{2 x^{5} y^{4} z^{2}}$

Use the distributive property to expand the product. Follow the example.
EXAMPLE: $(x+4)(2 x-11)=2 x^{2}-11 x+8 x-44=2 x^{2}-3 x-44$
31. $(x-8)(x+3)$
32. $(y-3)(y+3)$
33. $(2 x+3)(5 x-6)$

Factor each into the product of two binomials. Follow the example.
EXAMPLE: $\mathrm{x}^{2}+6 \mathrm{x}-7=(\mathrm{x}-1)(\mathrm{x}+7)$
34. $x^{2}-10 x+24$
35. $x^{2}-81$
36. $x^{2}-8 x-20$
37. $x^{2}+13 x+36$

Factor each and solve for x. Follow the example.
EXAMPLE: $x^{2}+5 x-6=0$

$$
(x+6)(x-1)=0 \quad \text { Factored and equal to } 0
$$

$$
(x+6)=0 \text { OR }(x-1)=0 \quad \underline{\text { Either factor may equal } 0}
$$

$$
x=-6 \quad \text { OR } \quad x=1
$$

38. $x^{2}+6 x+8=0$
39. $x^{2}-3 x-4=0$
40. $x^{2}-15 x+50=0$
41. $x^{2}+x-12=0$

Solve by the graphing, substitution or elimination method.
EXAMPLE Substitution: $y=3 x-4$ and $8 x-2 y=10$

$$
\begin{aligned}
& 8 x-2(3 x-4)=10 \text { Substitute the value for } y \\
& 8 x-6 x+8=10 \\
& 2 x+8=10 \\
& 2 x=2 \\
& x=1 \text { Finish solving: } y=3(1)-4 \text { so } y=-1 . \\
& \text { Then CHECK! }
\end{aligned}
$$

EXAMPLE Elimination: $4 x+6 y=12$

$$
\begin{aligned}
\frac{4 x}{14 y}-\frac{8 y=5}{=7} & \text { Subtract the two equations to get }---- \\
y=.5 & \text { Finish solving for } x: 4 x+6(.5)=12 \text {, so } x=2.25 . \\
& \text { Then CHECK! }
\end{aligned}
$$

42.

$2 y+x=5$
$y=3 x-1$
$y=3 x-1$
43.

$$
\begin{aligned}
& x=3+y \\
& x-7 y=45
\end{aligned}
$$

44.

$$
\begin{aligned}
& 5 x+2 y=13 \\
& 5 x+4 y=11
\end{aligned}
$$

RULES FOR SIMPLIFYING RADICALS (square roots)

$$
\begin{array}{lll}
a \sqrt{b} \times c \sqrt{d}=a c \sqrt{b d} & \frac{\sqrt{a}}{\sqrt{b}}=\sqrt{a / b} & \sqrt{a} \times \sqrt{a}=\sqrt{a^{2}}=|a| \\
a \sqrt{b}+c \sqrt{b}=(a+c) \sqrt{b} &
\end{array}
$$

Remember, proper form for radicals means:

a. No perfect square factor under the radical. For example, $\sqrt{45}=\sqrt{9} \times \sqrt{5}=3 \sqrt{5}$.
b. No fractions/decimals may be left under the radical. For example, $\sqrt{3 / 4}=\frac{\sqrt{3}}{\sqrt{4}}=\frac{\sqrt{3}}{2}$.
c. No radical may be left in the denominator of a fraction. For example,

$$
\sqrt{3 / 7}=\frac{\sqrt{3}}{\sqrt{7}}=\frac{\sqrt{3}}{\sqrt{7}} \times \frac{\sqrt{7}}{\sqrt{7}}=\frac{\sqrt{21}}{7} . \text { Another example, } \frac{15 \sqrt{75}}{20 \sqrt{21}}=\frac{3 \sqrt{25} \sqrt{3}}{4 \sqrt{7} \sqrt{3}}=\frac{3 \times 5}{4 \sqrt{7}}=\frac{3 \times 5 \times \sqrt{7}}{4 \sqrt{7} \sqrt{7}}=\frac{15 \sqrt{7}}{28} .
$$

Simplify each. Leave in best radical form. NO DECIMAL EQUIVALENTS.

45. $\sqrt{32}$
46. $\frac{\sqrt{64}}{\sqrt{16}}$
47. $\sqrt{20} \quad \sqrt{80}$
48. $4 \sqrt{5} \times 3 \sqrt{10}$
49. $\frac{\sqrt{18}}{\sqrt{24}}$
50. $\frac{8 \sqrt{3}}{\sqrt{2}}$

Write an equation and solve. Example: What is 24% of $70 ? \times=.24 \times 70, x=16.8$ 51. What is 30% of 160 ?
52. 18 is what percent of 45 ?
53. $\quad 16.8$ is 28% of what number?

Enjoy your summer. See you in the Fall!

