Summer Work Packet for MPH Math Classes

Students going into Geometry Sept. 2018

This packet is designed to help students stay current with their math skills.

Each math class expects a certain level of number sense, algebra sense and graph sense in order to be successful in the course.

These problems need to be completed in the space provided, or on a separate sheet of paper, by the first day of class. Be sure to show all work.

Students can expect this packet to be graded, and/or to have a test on this material during the first marking period. If you have any questions, please email Mrs. Reeve at sreeve@mphschool.org or Mrs. Meehan at dmeehan@mphschool.org.

Supply List for Geometry

TI-84 or TI-84⁺ calculator ¹/₄" graph paper Pencils/pens Colored pencils 3 ring binder 3 ring binder pencil pouch Protractor

Quality compass -- Compasses with a wheel between the arms are strongly preferred, as they prevent slippage, which is important for successful constructions.

Show all work! Do NOT round any answers. Write the answers as a fraction if the decimal is repeating or the calculator does not show the whole decimal.

Evaluate each expression. Find the answer and <u>show your work</u>. Remember Order of Operations: Grouping, Exponents, Multiplication and Division, then Addition and Subtraction, all from left to right.

1.
$$40 - \frac{20 - 3(5)}{5} + 3(2 - 6)^2 =$$

2. If
$$a = 6$$
, $b = -2$, and $c = 8$; $\frac{2(a-c)}{b+4} =$

Translate into algebra.

3. Five times a certain number is half a different number.

Simplify. Show all your work. Remember, you need an LCD to add or subtract fractions.

4.
$$\frac{7}{9} - \frac{4}{5} = 5.$$
 $\frac{6}{5} + 2\frac{5}{8} = 5.$

6.
$$\frac{8}{9} \div \frac{2}{3}$$
 7. $\left(\frac{-5}{7}\right)\left(\frac{3}{10}\right) =$

Simplify each expression.

8. 7b - 6c - 3c = 9. $(n^6)(n^4) =$

10.
$$\frac{c^{50}}{c^{40}} =$$
 11. $\frac{12a^6}{4a}$

Solve each equation. Show all your work and CHECK!

12.
$$6x = -3 + 7$$
 13. $4h = -2(3h + 5)$

Check:

Check:

14.
$$18 = -3y$$
 15. $\frac{x}{-5} = 8$

Check:

Check:

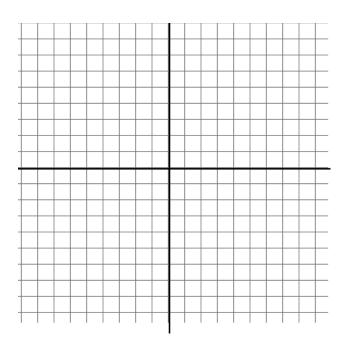
16.
$$\frac{2x-8}{2} = 5$$
 17. $6x - 9 = x + 11$

Check:

Check:

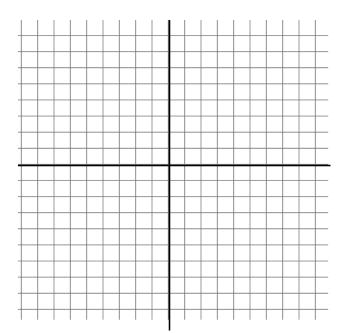
18. -5(3-x) = 3x + 1

Check:


Solve each inequality and graph the solution on a number line. Show all your work. Remember, if you multiply or divide by a negative number you must switch the direction of the inequality sign.

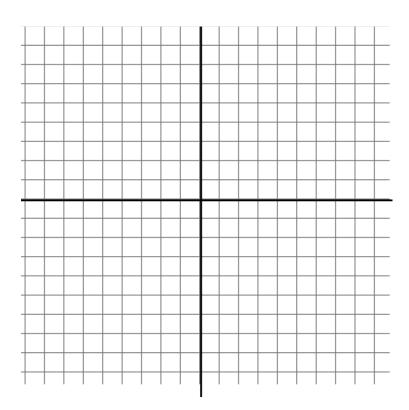
19. x - (-4) > 9-> ◄ 20. $\frac{x}{-2} < 3$ 21. 9n + 3 < 3n - 15

22. $3n + 5 \ge -4$


Graph the equation. Use a table or the slope-intercept method, y = mx + b.

Graph the inequality. Don't forget to shade and to show your <u>check</u>.

24. $y \le 2x - 3$



Find the slope of the line containing the points.

25. (-3, 11) and (2, 6)

Find the **x-intercept and y-intercept**. Graph the points. Find the slope of the line through the points. Write the equation in slope-intercept (y = mx + b) form.

26. 6x - 4y = 12

Simplify the following expressions.

Example: $3(m^2 + n) - 2(3m^2 - 4n) = 3m^2 + 3n - 6m^2 + 8n = -3m^2 + 11n$

27.
$$(3x^2 + 4x - 5xy) + (-7x^2 + 6x - 5xy)$$

28.
$$(5y^3 - 3y + 4) + (2y^2 + 6y - 4y^3) - (9y^2 - 6 + 2y^3)$$

29.
$$(-2x^7)(3x^4)$$

$$30. \quad \frac{12x^3y^4z^5}{2x^5y^4z^2}$$

Use the distributive property to expand the product. Follow the example.

EXAMPLE: $(x + 4)(2x - 11) = 2x^2 - 11x + 8x - 44 = 2x^2 - 3x - 44$

31.
$$(x-7)(x+5)$$
 32. $(y-8)(y+8)$

33. (2x+5)(3x-4)

Factor each into the product of two binomials. Follow the example.

EXAMPLE: $x^2 + 6x - 7 = (x - 1)(x + 7)$

34. $x^2 - 10x + 24$ 35. $x^2 - 81$

36. $x^2 - 8x - 20$

37. $x^2 + 13x + 36$

Factor each and solve for x. Follow the example.

EXAMPLE:	$x^{2} + 5x - 6 = 0$ (x + 6)(x - 1) = 0 (x + 6) = 0 OR (x - 1) = 0 x = -6 OR x = 1		ored and equal to 0 <u>er</u> factor may equal 0
38. $x^2 + 6x + 8 =$	0	39.	$x^2 - 3x - 4 = 0$

40. $x^2 - 15x + 50 = 0$ 41. $x^2 + x - 12 = 0$

Solve by the graphing, substitution or elimination method.

EXAMPLE Substitution: y = 3x - 4 and 8x - 2y = 10 8x - 2 (3x - 4) = 10 Substitute the value for y 8x - 6x + 8 = 10 2x + 8 = 10 2x = 2 x = 1 Finish solving: y = 3(1) - 4 so y = -1. Then CHECK! 8(1) - 2(-1) = 108 + 2 = 10 yes

EXAMPLE Elimination: 4x + 6y = 12 4x - 8y = 5 14y = 7 $y = \frac{1}{2}$ Subtract the two equations to get --- $y = \frac{1}{2}$ Finish solving for x: 4x + 6(.5) = 12, so $x = \frac{9}{4}$. Then CHECK! $4(\frac{9}{4}) - 8(\frac{1}{2}) = 5$ 9 - 4 = 5 yes

42.	2y + x = 5
<i>4∠</i> .	y = 3x - 1

Check:

43. x = 3 + yx - 7y = 45

Check:

Check:

44.	5x + 2y = 13
	5x + 4y = 11

RULES FOR SIMPLIFYING RADICALS (square roots)

$$a\sqrt{b} \times c\sqrt{d} = ac\sqrt{bd}$$
 $\frac{\sqrt{a}}{\sqrt{b}} = \sqrt{\frac{a}{b}}$ $\sqrt{a} \times \sqrt{a} = \sqrt{a^2} = |a|$

 $a\sqrt{b} + c\sqrt{b} = (a+c)\sqrt{b}$

Remember, proper form for radicals means:

- a. No perfect square factor under the radical. For example, $\sqrt{45} = \sqrt{9} \times \sqrt{5} = 3\sqrt{5}$.
- b. No fractions/decimals may be left under the radical. For example, $\sqrt{\frac{3}{4}} = \frac{\sqrt{3}}{\sqrt{4}} = \frac{\sqrt{3}}{2}$.
- c. No radical may be left in the denominator of a fraction. For example,

$$\sqrt{\frac{3}{7}} = \frac{\sqrt{3}}{\sqrt{7}} = \frac{\sqrt{3}}{\sqrt{7}} \times \frac{\sqrt{7}}{\sqrt{7}} = \frac{\sqrt{21}}{7}.$$
 Another example, $\frac{15\sqrt{75}}{20\sqrt{21}} = \frac{3\sqrt{25}\sqrt{3}}{4\sqrt{7}\sqrt{3}} = \frac{3\times5}{4\sqrt{7}} = \frac{3\times5\times\sqrt{7}}{4\sqrt{7}\sqrt{7}} = \frac{15\sqrt{7}}{28}.$

Simplify each. Leave in best radical form. NO DECIMAL EQUIVALENTS.

45.
$$\sqrt{32}$$
 46. $\frac{\sqrt{64}}{\sqrt{16}}$

47.
$$\sqrt{20} - \sqrt{80}$$
 48. $4\sqrt{5} \times 3\sqrt{10}$

49.
$$\frac{\sqrt{18}}{\sqrt{24}}$$

50.
$$\frac{8\sqrt{3}}{\sqrt{2}}$$

Write an equation and solve. Example: What is 24% of 70? $x = .24 \times 70$, x = 16.8

51. What is 30% of 210?

52. 18 is what percent of 45?

53. 16.8 is 28% of what number?

Enjoy your summer. See you in the Fall!