## Summer Work Packet for MPH Math Classes <br> Students going into <br> Geometry S <br> Sept. 2021

Name:

This packet is designed to help students stay current with their math skills.

Each math class expects a certain level of number sense, algebra sense, and graph sense in order to be successful in the course.

These problems need to be completed in the space provided, or on a separate sheet of paper, by the first day of class. Be sure to show all work.

If you have any questions, please email Mrs. LaPointe at klapointe@mphschool.org or Mrs. Meehan at dmeehan@mphschool.org.

## Supply List for Geometry

- TI-84+ calculator (Please bring in the points off the packaging, if you buy a new one.)
- Pencils/pens
- Colored pencils
- 3 ring binder (Can be shared with another class)
- 3 ring binder pencil pouch
- Protractor
- Quality compass -- Compasses with a wheel between the arms are strongly preferred, as they prevent slippage, which is important for successful constructions.

Show all work! Do NOT round any answers. Write the answers as a fraction if the decimal is repeating, or the calculator does not show the whole decimal.

Evaluate each expression. Find the answer and show your work. Remember Order of Operations: Grouping, Exponents, Multiplication and Division, then Addition and Subtraction, all from left to right.

1. $40-\frac{20-3(5)}{5}+3(2-6)^{2}=$
2. If $\mathrm{a}=6, \mathrm{~b}=-2$, and $\mathrm{c}=8$, then $\frac{2(a-c)}{b+4}=$ $\qquad$

Translate into algebra.
3. Five times a certain number is half a different number.

Simplify. Show all your work. Remember, you need an LCD to add or subtract fractions.
4. $\frac{7}{9}-\frac{4}{5}=$
5. $\frac{6}{5}+2 \frac{5}{8}=$
6. $\frac{8}{9} \div \frac{2}{3}$
7. $\left(\frac{-5}{7}\right)\left(\frac{3}{10}\right)=$

Simplify each expression.
8. $7 b-6 c-3 c=$
9. $\left(n^{6}\right)\left(n^{4}\right)=$
10. $\frac{c^{50}}{c^{40}}=$
11. $\frac{12 a^{6}}{4 a}$

Solve each equation. Show all your work and CHECK!
12. $6 x=-3 x+7$
13. $4 \mathrm{~h}=-2(3 \mathrm{~h}+5)$

## Check:

Check:
14. $18=-3 y$
15. $\frac{x}{-5}=8$

## Check:

Solve each inequality and graph the solution on a number line. Show all your work. Remember, if you multiply or divide by a negative number you must switch the direction of the inequality sign.
17. $\mathrm{x}-(-4)>9$
18. $\frac{x}{-2}<3$
19. $3 n+5 \geq-4$


Graph the equation. Use a table or the slope-intercept method, $\mathbf{y}=\mathbf{m x}+\mathbf{b}$.
20. $\mathrm{y}=-2 \mathrm{x}+3 \quad$ slope: $\qquad$ $y$-intercept: $\qquad$


Graph the inequality. Don't forget to shade and to show your check.
21. $\mathrm{y} \leq 2 \mathrm{x}-3$


Find the slope of the line containing the points.
22. $(-3,11)$ and $(2,6)$

Find the $\mathbf{x}$-intercept and y-intercept. Graph the points. Find the slope of the line through the points. Write the equation in slope-intercept $(y=m x+b)$ form.
23. $6 x-4 y=12$


Simplify the following expressions.
Example: $\mathbf{3}\left(m^{2}+n\right)-\mathbf{2}\left(3 m^{2}-4 n\right)=3 m^{2}+3 n-6 m^{2}+8 n=-3 m^{2}+11 n$
24. $\left(3 x^{2}+4 x-5 x y\right)+\left(-7 x^{2}+6 x-5 x y\right)$
25. $\left(5 y^{3}-3 y+4\right)+\left(2 y^{2}+6 y-4 y^{3}\right)-\left(9 y^{2}-6+2 y^{3}\right)$

Use the distributive property to expand the product. Follow the example.
EXAMPLE: $(x+4)(2 x-11)=2 x^{2}-11 x+8 x-44=2 x^{2}-3 x-44$
26. $(x-7)(x+5)$
27. $(y-8)(y+8)$

Factor each into the product of two binomials. Follow the example.
EXAMPLE: $\mathrm{x}^{2}+6 \mathrm{x}-7=(\mathrm{x}-1)(\mathrm{x}+7)$
28. $x^{2}-10 x+24$
29. $x^{2}-81$
30. $x^{2}-8 x-20$

Factor each and solve for x. Follow the example.
EXAMPLE: $x^{2}+5 x-6=0$

$$
\begin{aligned}
& (x+6)(x-1)=0 \\
& (x+6)=0 \text { OR }(x-1)=0 \\
& x=-6 \quad \text { OR } \quad x=1
\end{aligned}
$$

31. $x^{2}+6 x+8=0$
32. $x^{2}-3 x-4=0$

Solve by the graphing, substitution, or elimination method.
EXAMPLE Substitution: $y=3 x-4$ and $8 x-2 y=10$

$$
\begin{aligned}
& 8 x-2(3 x-4)=10 \text { Substitute the value for } y \\
& 8 x-6 x+8=10 \\
& 2 x+8=10 \\
& 2 x=2 \\
& x=1 \text { Finish solving: } y=3(1)-4 \text { so } y=-1 . \\
& \text { Then CHECK! } 8(\mathbf{1})-2(-1)=10 \\
& 8+2=10 \text { yes }
\end{aligned}
$$

EXAMPLE Elimination: $4 x+6 y=12$

$$
\begin{aligned}
\frac{4 x-8 y=5}{14 y=7} & \text { Subtract the two equations to get }---- \\
y=1 / 2 & \text { Finish solving for } x: 4 x+6(.5)=12 \text {, so } x=9 / 4 . \\
& \text { Then CHECK! } 4(9 / 4)-8(1 / 2)=5 \\
& \\
& \\
&
\end{aligned}
$$

33. 

$$
\begin{aligned}
& 2 y+x=5 \\
& y=3 x-1
\end{aligned}
$$

Check:
34.

$$
\begin{aligned}
& x=3+y \\
& x-7 y=45
\end{aligned}
$$

Check:

RULES FOR SIMPLIFYING RADICALS (square roots)

$$
\begin{array}{lll}
a \sqrt{b} \times c \sqrt{d}=a c \sqrt{b d} & \frac{\sqrt{a}}{\sqrt{b}}=\sqrt{a / b} & \sqrt{a} \times \sqrt{a}=\sqrt{a^{2}}=|a| \\
a \sqrt{b}+c \sqrt{b}=(a+c) \sqrt{b} &
\end{array}
$$

## Remember, proper form for radicals means:

a. No perfect square factor under the radical. For example, $\sqrt{45}=\sqrt{9} \times \sqrt{5}=3 \sqrt{5}$.
b. No fractions/decimals may be left under the radical. For example, $\sqrt{3 / 4}=\frac{\sqrt{3}}{\sqrt{4}}=\frac{\sqrt{3}}{2}$.
c. No radical may be left in the denominator of a fraction. For example,

$$
\sqrt{3 / 7}=\frac{\sqrt{3}}{\sqrt{7}}=\frac{\sqrt{3}}{\sqrt{7}} \times \frac{\sqrt{7}}{\sqrt{7}}=\frac{\sqrt{21}}{7} . \text { Another example, } \frac{15 \sqrt{75}}{20 \sqrt{21}}=\frac{3 \sqrt{25} \sqrt{3}}{4 \sqrt{7} \sqrt{3}}=\frac{3 \times 5}{4 \sqrt{7}}=\frac{3 \times 5 \times \sqrt{7}}{4 \sqrt{7} \sqrt{7}}=\frac{15 \sqrt{7}}{28} .
$$

Simplify each. Leave in best radical form. NO DECIMAL EQUIVALENTS.
35. $\sqrt{32}$
36. $\frac{\sqrt{64}}{\sqrt{16}}$
37. $\sqrt{20} \sqrt{80}$
38. $4 \sqrt{5} \times 3 \sqrt{10}$

