Summer Work Packet for MPH Math Classes
 Students going into Pre-calculus AC
 Sept. 2018

Name:

This packet is designed to help students stay current with their math skills.

Each math class expects a certain level of number sense, algebra sense and graph sense in order to be successful in the course.

These problems need to be completed in the space provided and handed in for a grade by September $7^{\text {th }}$. Be sure to show all work.

Please email me at dmeehan@mphschool.org with any questions.

** You will need a TI-84 calculator for this class.** **

Linear Functions \& Inequalities

Name \qquad

1. Given: $6 x-4 y=12$.
A. Find the coordinates of the x -intercept: \qquad and y-intercept: \qquad .
B. Use these to calculate the slope. $\mathrm{m}=$ \qquad
C. Write the equation of a line parallel to the given line and going through the point $(0,-3)$.
D. Graph both lines below.

2. Given: $m=-1 / 2$ and $A(-2,5)$

Name \qquad
A. Write the equation of the line in point-slope form: \qquad
B. Write the equation of the line perpendicular to the given line going through the point $(4,5)$ in point-slope form.
3. Given: $(y-3)=3 / 4(x+5)$
A. Name a point on the line. P (\qquad , \qquad)
B. Find the slope. $m=$ \qquad
C. Find $f(-9) . \quad f(-9)=$ \qquad
4. Graph the inequalities. Name the points of intersection. Label the solution area. Show your check to verify the shaded area is correct.

$$
y>2 / 3 x-2 \quad \text { and } \quad y \leq-x-3 \quad \text { and } \quad x<3
$$

System of Equations

\qquad
Solve for the variables using the elimination method. Check.

$$
\text { 1. } \quad \begin{array}{r}
5 \mathrm{k}+9 \mathrm{~h}=13 \\
6 \mathrm{k}+4 \mathrm{~h}=2
\end{array}
$$

$$
\text { 2. } \quad \begin{aligned}
a+b+c & =6 \\
2 a+b-2 c & =-10 \\
a+4 b+c & =2
\end{aligned}
$$

Solve for the variables using the substitution method. Check.
3. $y=5 x-12$

$$
5 x-2 y=124
$$

Algebra Review: Simplify completely.

1. $\frac{3 / 2+5 / x}{1+3 / 4 x}$
2. $\frac{a^{-1}+b^{-1}}{a-b}$
3. $\frac{28 x^{4} y^{5}-16 x^{4} y^{3}+4 x^{8} y}{4 x^{4} y}$
4. $\frac{\left(3 y^{2}-108\right)\left(y^{3}+2 y^{2}-24 y\right)}{y\left(y^{2}+12 y+36\right)\left(3 y^{2}-30 y+72\right)}$ (Leave your answer in factored form.)
5. $\frac{m^{4}-1}{m^{3}-m^{2}+m-1}$ (Leave your answer in factored form.)
6. $\frac{a b^{2} c}{15} \div \frac{a b c^{3}}{12} \cdot \frac{18 b c}{2}$
\qquad
7. $\frac{6 m-18 n}{9 m+9 n} \cdot \frac{4 m-4 n}{24 n-8 m}$ (Leave your answer in factored form.)
8. $\frac{6 a^{2}-11 a+3}{8 a^{2}-10 a-3} \div \frac{6 a^{2}+7 a-3}{8 a^{2}+14 a+3} \quad$ (Leave your answer in factored form.)
9. $\frac{a^{2} b-2 a b^{2}}{a^{2}+2 a b-3 b^{2}} \div \frac{a^{2}+6 a b}{a^{2}+11 a b-12 b^{2}} \div \frac{a b-2 b^{2}}{a^{2}+9 a b+18 b^{2}}$
(Leave your answer in factored form.)
10. $\frac{5}{6 x}+\frac{3}{4 y}$
11. $\frac{x}{x+2}-\frac{1}{x^{2}-4}$
12. $\frac{7}{d^{2}-100}+\frac{4}{d^{2}+11 d+10}$
13. $\frac{7}{4 x^{2}-1}-\frac{2}{1-2 x}-\frac{3}{2 x-1}$

Algebra Review: Solve and check.
14. $w^{2}+8 w+7=0$
16. $2 p^{3}+p^{2}-8 p-4=0$
18. $\frac{3}{c}-\frac{2}{c-1}=\frac{1}{c^{2}-c}$
\qquad
15. $3 b^{3}+13 b=7 b^{2}$
17. $\frac{5}{h}+\frac{1}{2}=-2$
19. $\frac{5}{2 c+6}-\frac{1-2 c}{4 c}=2$
20. $\frac{a}{a-3}+\frac{a^{2}}{a^{2}-7 a+12}=\frac{2 a+1}{a-4}$
\qquad
Fill in the blanks with a rule to represent 3 different situations. Write two that represent a function and one that do not. Explain why each is or is not a function.

Ex. 1: The number of loads of laundry I do is a function of the number of people at home during the week.

Ex. 2: The fraction of the pool that is filled with water is a function of the amount of time the hose has been filling it.

Ex. 3: The age of each person in the class is dependent on the numbers 15, 16 and 17. (More than one person could be each age, or someone could be a different age.)

1. \qquad is \qquad

Function? Yes or No? Why?
2. \qquad is

Function? Yes or No? Why?
3. \qquad is \qquad

Function? Yes or No? Why?
\qquad
Prove algebraically that the function is odd, even or neither. Choosing a numerical value for x does NOT prove odd/even. It must be shown true for ALL values of x. Follow the example.

Definition: $f(x)$ is odd, if $f(-x)=-f(x) . \quad f(x)$ is even, if $f(-x)=f(x)$.
Otherwise, the function is neither odd nor even.
Example: $\mathrm{f}(\mathrm{x})=4 \mathrm{x}^{3}-5 \mathrm{x}$
Find $f(-x): f(-x)=4(-x)^{3}-5(-x)=-4 x^{3}+5 x$. Thus, $f(-x) \neq f(x)$.
Find $-f(x):-f(x)=-\left(4 x^{3}-5 x\right)=-4 x^{3}+5 x$. Thus, $-f(x)=f(-x)$ and the function is ODD.

1. $f(x)=6 x$
2. $\mathrm{f}(\mathrm{x})=1 / 4 x$
3. $f(x)=x^{2}-4$
4. $\mathrm{f}(\mathrm{x})=3 x^{2}+1 / x^{2}$
5. $f(x)=(x-5)^{2}$
6. $f(x)=x^{3}-3 x^{2}+3 x-1$
\qquad
Use the number lines to indicate the sign of each factor. From this, determine the intervals of x values which make the inequality true.

EXAMPLE 1: $\quad 4 x^{3} \geq 4 x^{2}+24 x$

$$
4 x^{3}-4 x^{2}-24 x \geq 0
$$

$$
4 x\left(x^{2}-x-6\right) \geq 0
$$

$$
4 x(x-3)(x+2) \geq 0
$$

EXAMPLE 2: $\frac{x(x-3)}{(x+2)}<0$
Use the same number lines because multiplication and division with negative numbers have the same rules.

Therefore, the solution set for Example 1 is $\{x \mid-2 \leq x \leq 0$ or $x \geq 3\}$.

Therefore, the solution set for Example $\mathbf{2}$ is $\{\mathbf{x} \mid \mathbf{x}<-\mathbf{2}$ or $\mathbf{0}<\mathbf{x}<\mathbf{3}\}$. (Example 2 is undefined at $\mathrm{x}=-2 .{ }^{*}$)
\qquad
Find the solution set using the sign patterning method. Graph the solution on a number line.

1. $w^{2}-7 w<0$
2. $\frac{k}{6-k}<0$
3. $30+\mathrm{c}-\mathrm{c}^{2} \leq 0$
4. $\frac{3}{5+x}<0$
5. $18 x^{3} \leq 2 x$
6. $\frac{g^{2}+3 g-28}{g-2}<0$
7. $(2-p)(4-p)(7-p)>0$

Logarithms-Solve \& check. Show work.

1. $\log _{4}(x+1)=3$
2. $\log _{3}\left(x^{2}\right)=5$

$$
\text { 5. } \log (x+1)+\log (x-2)=1
$$

3. $\log _{5}(x+2)=\log _{5}(4 x-6)$
\qquad
1) Using the unit circle, give the exact value of each trigonometric expression. Pay attention to the sign of the answer (no calculator).
2) On the unit circle mark the letter of each problem in the correct angle position. Letter a is done for you.
a) $\sin (\pi)$ \qquad i) $\csc (-19 \pi / 4)$
b) $\cos (5 \pi / 4)$ \qquad j) $\cos (14 \pi)$
c) $\tan (11 \pi / 6)$ \qquad k) $\sec (13 \pi / 4)$
3) $\tan (19 \pi / 3)$
d) $\cot (22 \pi / 3)$ \qquad
m) $\cot (-17 \pi)$
e) $\sec (13 \pi / 2)$ \qquad
n) $\sin (47 \pi / 3)$
f) $\csc (28 \pi)$ \qquad
g) $\sin (41 \pi / 6)$
o) $\cos (-11 \pi / 6)$
h) $\tan (-7 \pi / 3)$
p) $\sin (-27 \pi / 4)$
\qquad

\qquad
\qquad
\qquad

Graph the following functions on the graph below. Be sure to label your axes and identify the scale on each axis. Do each pair in the question on the same set of axes.

1. $\mathrm{y}=\mathrm{x}^{2} \quad \mathrm{y}=1 / 2 \mathrm{x}^{2}$														

	左									$-2 \sqrt{x}$			
					\uparrow								

3. $y=2^{x}$
$y=2^{x-3}$
Name

												4													
-																									
												\checkmark													

4. $\mathrm{y}=\log _{3}(\mathrm{x})$
$y=\log _{3}(x)+2$

\qquad
5. $\mathrm{y}=\sin (\mathrm{x})$

$$
y=\cos (x)
$$

Graph from -2π to 2π. Use 6 BLOCKS $=\pi$ on the x -axis and 2 BLOCKS $=1$ on the y -axis. (If you use your calculator, be sure to put it in radian mode and use ZOOM TRIG for the window.)

