Summer Work Packet for MPH Math Classes

Students going into Pre-calculus AC Sept. 2018

Name:

This packet is designed to help students stay current with their math skills.

Each math class expects a certain level of number sense, algebra sense and graph sense in order to be successful in the course.

These problems need to be completed in the space provided and handed in for a grade by September 7th. Be sure to show all work.

Please email me at <u>dmeehan@mphschool.org</u> with any questions.

Linear Functions & Inequalities

Name _____

1. Given: 6x - 4y = 12.

A. Find the coordinates of the x-intercept: _____ and y-intercept: _____.

B. Use these to calculate the slope. m = _____

C. Write the equation of a line parallel to the given line and going through the point (0, -3).

D. Graph both lines below.

2. Given: $m = -\frac{1}{2}$ and A (-2, 5)

Name _____

A. Write the equation of the line in point-slope form: _____

- B. Write the equation of the line perpendicular to the given line going through the point (4, 5) in point-slope form.
- 3. Given: $(y 3) = \frac{3}{4}(x + 5)$
 - A. Name a point on the line. P (____, ___)
 - B. Find the slope. m =_____
 - C. Find f(-9). f(-9) = _____

4. Graph the inequalities. Name the **points of intersection**. Label the solution area. Show your check to verify the shaded area is correct.

System of Equations

```
Name _____
```

Solve for the variables using the <u>elimination</u> method. <u>Check</u>.

1. 5k + 9h = 13 6k + 4h = 22. a + b + c = 6 2a + b - 2c = -10a + 4b + c = 2

Solve for the variables using the <u>substitution</u> method. <u>Check</u>.

3. y = 5x - 125x - 2y = 124 Algebra Review: Simplify completely.

$$1. \ \frac{\frac{3}{2} + \frac{5}{x}}{1 + \frac{3}{4x}}$$

2.
$$\frac{a^{-1}+b^{-1}}{a-b}$$

$$3. \ \frac{28x^4y^5 - 16x^4y^3 + 4x^8y}{4x^4y}$$

4. $\frac{(3y^2 - 108)(y^3 + 2y^2 - 24y)}{y(y^2 + 12y + 36)(3y^2 - 30y + 72)}$ (Leave your answer in factored form.)

5.
$$\frac{m^4 - 1}{m^3 - m^2 + m - 1}$$
 (Leave your answer in factored form.)

$$6. \ \frac{ab^2c}{15} \div \frac{abc^3}{12} \cdot \frac{18bc}{2}$$

7.
$$\frac{6m-18n}{9m+9n} \cdot \frac{4m-4n}{24n-8m}$$

(Leave your answer in factored form.)

8.
$$\frac{6a^2 - 11a + 3}{8a^2 - 10a - 3} \div \frac{6a^2 + 7a - 3}{8a^2 + 14a + 3}$$
 (Leave your answer in factored form.)

9.
$$\frac{a^2b - 2ab^2}{a^2 + 2ab - 3b^2} \div \frac{a^2 + 6ab}{a^2 + 11ab - 12b^2} \div \frac{ab - 2b^2}{a^2 + 9ab + 18b^2}$$

(Leave your answer in factored form.)

10.
$$\frac{5}{6x} + \frac{3}{4y}$$

11.
$$\frac{x}{x+2} - \frac{1}{x^2 - 4}$$

12.
$$\frac{7}{d^2 - 100} + \frac{4}{d^2 + 11d + 10}$$

$$13.\frac{7}{4x^2-1}-\frac{2}{1-2x}-\frac{3}{2x-1}$$

Algebra Review: Solve and <u>check</u>.

Name _____

14.
$$w^2 + 8w + 7 = 0$$
 15. $3b^3 + 13b = 7b^2$

16.
$$2p^3 + p^2 - 8p - 4 = 0$$

17. $\frac{5}{h} + \frac{1}{2} = -2$

18.
$$\frac{3}{c} - \frac{2}{c-1} = \frac{1}{c^2 - c}$$
 19. $\frac{5}{2c+6} - \frac{1-2c}{4c} = 2$

20.
$$\frac{a}{a-3} + \frac{a^2}{a^2 - 7a + 12} = \frac{2a+1}{a-4}$$

Functions

Name _____

Fill in the blanks with a rule to represent 3 different situations. Write two that represent a function and one that do not. Explain why each is or is not a function.

Ex. 1: <u>The number of loads of laundry I do</u> is a function of <u>the number of people at home during</u> <u>the week.</u>

Ex. 2: <u>The fraction of the pool that is filled with water</u> is a function of <u>the amount of time the</u> <u>hose has been filling it.</u>

Ex. 3: <u>The age of each person in the class</u> is dependent on <u>the numbers 15, 16 and 17</u>. (More than one person could be each age, or someone could be a different age.)

1	is	
Function? Yes or No? Why?		
2	is	
Function? Yes or No? Why?	13	
3	is	

Function? Yes or No? Why?

Odd and Even Functions

<u>Prove algebraically</u> that the function is odd, even or neither. Choosing a <u>numerical</u> value for x does **NOT** prove odd/even. It must be shown true for ALL values of x. Follow the example.

Definition: f(x) is <u>odd</u>, if f(-x) = -f(x). f(x) is <u>even</u>, if f(-x) = f(x).

Otherwise, the function is **<u>neither</u>** odd nor even.

Example: $f(x) = 4x^3 - 5x$

Find f(-x): $f(-x) = 4(-x)^3 - 5(-x) = -4x^3 + 5x$. Thus, $f(-x) \neq f(x)$.

Find -f(x): $-f(x) = -(4x^3 - 5x) = -4x^3 + 5x$. Thus, -f(x) = f(-x) and the function is ODD.

1.
$$f(x) = 6x$$
 4. $f(x) = \frac{1}{4x}$

2.
$$f(x) = x^2 - 4$$

5. $f(x) = 3x^2 + \frac{1}{x^2}$

3. $f(x) = (x-5)^2$ 6. $f(x) = x^3 - 3x^2 + 3x - 1$

Name

Use the number lines to indicate the sign of each factor. From this, determine the intervals of x values which make the inequality true.

Therefore, the solution set for Example 1 is $\{x | -2 \le x \le 0 \text{ or } x \ge 3\}$.

Therefore, the solution set for Example 2 is $\{x | x < -2 \text{ or } 0 < x < 3\}$. (Example 2 is undefined at x = -2.*)

Name ______ Find the solution set using the <u>sign patterning</u> method. Graph the solution on a number line.

1.
$$w^2 - 7w < 0$$
 5. $\frac{k}{6-k} < 0$

2. $30 + c - c^2 \le 0$

6.
$$\frac{3}{5+x} < 0$$

 $3.18x^3 \le 2x$

7.
$$\frac{g^2 + 3g - 28}{g - 2} < 0$$

4. (2-p)(4-p)(7-p) > 0

Logarithms-Solve & check. Show work.

Name _____

1. $\log_4(x+1) = 3$

4. $\log_5(x^2 - 4) = \log_5(3x)$

2. $\log_3(x^2) = 5$

5. $\log(x+1) + \log(x-2) = 1$

3. $\log_5(x+2) = \log_5(4x-6)$

Reference Angles & Trig Functions

Name		

- 1) Using the **unit circle**, give the <u>exact value</u> of each trigonometric expression. Pay attention to the sign of the answer (no calculator).
- 2) On the unit circle mark the letter of each problem in the correct angle position. Letter **a** is done for you.

Graphing Functions

Name _____

Graph the following functions on the graph below. Be sure to label your axes and identify the scale on each axis. Do each pair in the question on the same set of axes.

$$4. y = \log_3(x)$$

$$y = \log_3(x) + 2$$

5.
$$y = sin(x)$$
 $y = cos(x)$

Graph from -2π to 2π . Use 6 BLOCKS = π on the x-axis and 2 BLOCKS = 1 on the y-axis. (If you use your calculator, be sure to put it in radian mode and use ZOOM TRIG for the window.)

