Summer Work Packet for MPH Math Classes
 Students going into Pre-calculus AC
 Sept. 2020

Name:

This packet is designed to help students stay current with their math skills. Each math course expects a certain level of number sense, algebra sense, and graph sense in order to be successful in the course.

Complete these problems in the space provided by Friday, September $11^{\text {th }}$. Be sure to show all work. We will check this assignment in class. We will have quizzes on these topics in the following weeks.

Please email me at dmeehan@mphschool.org with any questions.
$* *$ ** You will need a TI-84 ${ }^{+}$calculator for this class. $* *$ **

Linear Functions \& Inequalities

Name \qquad

1. Given: $3 x-4 y=12$.
A. Find the coordinates of the x -intercept: \qquad and y-intercept: \qquad .
B. Use these to calculate the slope. $\mathrm{m}=$ \qquad
C. Write the equation of a line parallel to the given line and going through the point $(0,2)$.
D. Graph both lines below.

2. Given: $\mathrm{m}=-1 / 2$ and $\mathrm{A}(-4,3)$

Name \qquad
A. Write the equation of the line in point-slope form: \qquad
B. Write the equation of the line perpendicular to the given line going through the point $(2,1)$ in point-slope form.
3. Given: $(y-2)=3 / 4(x+4)$
A. Name a point on the line. P (\qquad , \qquad)
B. Find the slope. $m=$ \qquad
C. Find $f(-8) . \quad f(-9)=$ \qquad
4. Graph the inequalities. Name the points of intersection. Label the solution area. Show your check to verify the shaded area is correct.
$y>2 / 3 x-1 \quad$ and $\quad y \leq-x-2$ and $x>-3$

System of Equations

\qquad
Solve for the variables using the elimination method. Check.

$$
\text { 1. } \quad \begin{array}{r}
5 k+9 h=13 \\
6 k+3 h=13
\end{array}
$$

$$
\text { 2. } \begin{aligned}
a+b+c & =6 \\
2 a+b-2 c & =-10 \\
a+4 b+c & =2
\end{aligned}
$$

Solve for the variables using the substitution method. Check.
3. $y=3 x-12$

$$
3 x-2 y=125
$$

Algebra Review: Simplify completely.

1. $\frac{3 / 2+5 / x}{1+3 / 4 x}$
2. $\frac{a^{-1}+b^{-1}}{a-b}$
3. $\frac{28 x^{4} y^{5}-16 x^{4} y^{3}+4 x^{8} y}{4 x^{4} y}$
4. $\frac{\left(3 y^{2}-108\right)\left(y^{3}+2 y^{2}-24 y\right)}{y\left(y^{2}+12 y+36\right)\left(3 y^{2}-30 y+72\right)}$ (Leave your answer in factored form.)
5. $\frac{m^{4}-1}{m^{3}-m^{2}+m-1}$ (Leave your answer in factored form.)
6. $\frac{a b^{2} c}{15} \div \frac{a b c^{3}}{12} \cdot \frac{18 b c}{2}$
\qquad
7. $\frac{6 m-18 n}{9 m+9 n} \cdot \frac{4 m-4 n}{24 n-8 m}$ (Leave your answer in factored form.)
8. $\frac{6 a^{2}-11 a+3}{8 a^{2}-10 a-3} \div \frac{6 a^{2}+7 a-3}{8 a^{2}+14 a+3} \quad$ (Leave your answer in factored form.)
9. $\frac{a^{2} b-2 a b^{2}}{a^{2}+2 a b-3 b^{2}} \div \frac{a^{2}+6 a b}{a^{2}+11 a b-12 b^{2}} \div \frac{a b-2 b^{2}}{a^{2}+9 a b+18 b^{2}}$
(Leave your answer in factored form.)
10. $\frac{5}{6 x}+\frac{3}{4 y}$

Name
11. $\frac{x}{x+2}-\frac{1}{x^{2}-4}$
12. $\frac{7}{d^{2}-100}+\frac{4}{d^{2}+11 d+10}$
13. $\frac{7}{4 x^{2}-1}-\frac{2}{1-2 x}-\frac{3}{2 x-1}$

Algebra Review: Solve and check.

14. $w^{2}+8 w+7=0$
15. $3 b^{3}+13 b=7 b^{2}$
16. $2 p^{3}+p^{2}-8 p-4=0$
17. $\frac{5}{h}+\frac{1}{2}=-2$
18. $\frac{3}{c}-\frac{2}{c-1}=\frac{1}{c^{2}-c}$
19. $\frac{5}{2 c+6}-\frac{1-2 c}{4 c}=2$
20. $\frac{a}{a-3}+\frac{a^{2}}{a^{2}-7 a+12}=\frac{2 a+1}{a-4}$
\qquad
Fill in the blanks with a rule to represent 2 different situations. Write one that represent a function and one that does not. Explain why each is or is not a function.

Ex. 1: The number of loads of laundry I do is a function of the number of people at home during the week. FUNCTION

Ex. 2: The age of each person in the class is dependent on the numbers 15, 16 and 17. (NOT a FUNCTION-More than one person could be each age.)

1. \qquad is \qquad
Function? Yes or No? Why?
2. \qquad is \qquad
Function? Yes or No? Why?
\qquad
Prove algebraically that the function is odd, even or neither. Choosing a numerical value for x does NOT prove odd/even. It must be shown true for ALL values of x. Follow the example. Show your work.

Definition: $f(x)$ is odd, if $f(-x)=-f(x) . \quad f(x)$ is even, if $f(-x)=f(x)$.
Otherwise, the function is neither odd nor even.
Example: $f(x)=4 x^{3}-5 x$
Find $\mathrm{f}(-\mathrm{x})$: $\mathrm{f}(-\mathrm{x})=4(-\mathrm{x})^{3}-5(-\mathrm{x})=-4 \mathrm{x}^{3}+5 \mathrm{x}$. Thus, $\mathrm{f}(-\mathrm{x}) \neq \mathrm{f}(\mathrm{x})$.
Find $-f(x):-f(x)=-\left(4 x^{3}-5 x\right)=-4 x^{3}+5 x$. Thus, $-f(x)=f(-x)$ and the function is ODD.

1. $f(x)=-3 x+1$
2. $\mathrm{f}(\mathrm{x})=3 x^{2}+1 / x^{2}$
3. $f(x)=(x-5)^{2}$
4. $\mathrm{f}(\mathrm{x})=1 / 4 x$
5. $f(x)=x^{2}+4$
6. $f(x)=x^{3}+3 x^{2}+3 x+1$
\qquad
Use the number lines to indicate the sign of each factor. From this, determine the intervals of x values which make the inequality true.

EXAMPLE 1: $\quad 4 x^{3} \geq 4 x^{2}+24 x$

$$
\text { EXAMPLE 2: } \frac{4 x(x-3)}{(x+2)}<0
$$

$$
\begin{aligned}
& 4 x^{3}-4 x^{2}-24 x \geq 0 \\
& 4 x\left(x^{2}-x-6\right) \geq 0 \\
& 4 x(x-3)(x+2) \geq 0
\end{aligned}
$$

Use the same number lines because multiplication and division with negative numbers have the same rules.

Therefore, the solution set for Example 1 is $\{x \mid-2 \leq x \leq 0$ or $x \geq 3\}$.

Therefore, the solution set for Example $\mathbf{2}$ is $\{\mathbf{x} \mid \mathbf{x}<-\mathbf{2}$ or $\mathbf{0}<\mathbf{x}<\mathbf{3}\}$. (Example 2 is undefined at $\left.x=-2 .^{*}\right)$

1. Compare the expression to 0 .
2. Factor.
3. Determine when each factor is 0 , positive, and negative, and record on a number line.
4. Multiply/divided the groups to determine the sign of the final expression.
\qquad
Find the solution set using the sign patterning method. Graph the solution on a number line.
5. $w^{2}-7 w<0$
6. $(2-p)(4-p)(7-p)>0$
7. $30+\mathrm{c}-\mathrm{c}^{2} \leq 0$
8. $\frac{k}{6-k}<0$
9. $18 x^{3} \leq 2 x$
10. $\frac{g^{2}+3 g-28}{g-2}<0$

Logarithms-Solve \& check. Show work.

1. $\log _{4}(x+1)=3$
2. $\log _{3}\left(x^{2}\right)=5$

$$
\text { 5. } \log (x+1)+\log (x-2)=1
$$

3. $\log _{5}(x+2)=\log _{5}(4 x-6)$

To help you learn about the UNIT CIRCLE and the trigonometry functions, you can explore the following websites (and many others that you can google). When you understand degrees, radians, positive/negative angles, the 6 functions and their relationship to a right triangle, then you should do the problems on the next page. Everything relates to the $45^{\circ}-45^{\circ}-90^{\circ}$ and $30^{\circ}-60^{\circ}-90^{\circ}$ right triangles and the relationship of their sides that you learned about in geometry.

TRIGONOMETRY
Amazing Unit circle
http://mathmistakes.info/facts/TrigFacts/learn/uc/uc.html
More Unit Circle
http://www.mathsisfun.com/geometry/unit-circle.html
Unit circle GAME
http://www.mathwarehouse.com/unit-circle/unit-circle-game.php
Colorful picture of entire unit circle
http://www.analyzemath.com/unitcircle/special_angles.html
Another full unit circle
http://en.wikipedia.org/wiki/Image:Unit_circle_angles.svg
Degrees to Radians Practice
https://www.khanacademy.org/math/trigonometry/unit-circle-trig-
func/radians_tutorial/e/degrees_to_radians
Interactive Radian and Degree Practice with UNIT CIRLE http://goo.gl/epSfWQ
More practice Degrees to Radians (multiple choice)
http://www.ixl.com/math/algebra-2/convert-between-radians-and-degrees
Video Tutorial with Right Triangle Applications
http://www.youtube.com/watch?v=2gqRR1w71CE
LINKS FOR GRAPHING TRIG FUNCTIONS:
Graphing sine and cosine applets https://www.geogebra.org/m/znb4GNk7
Desmos Unwrapping Unit Circle https://www.desmos.com/calculator/cpb0oammx7
Unwrapping the Unit Circle http://www.analyzemath.com/unitcircle/unit_circle_applet.html

\qquad

1) Using the unit circle, give the exact value of each trigonometric expression. Pay attention to the sign of the answer (no calculator).
2) On the unit circle mark the letter of each problem in the correct angle position. Letter a is done for you.
a) $\sin (\pi)$ \qquad i) $\tan (-19 \pi / 4)$
b) $\cos (5 \pi / 4)$ \qquad j) $\sec (14 \pi)$
k) $\csc (13 \pi / 4)$
c) $\tan (11 \pi / 6)$ \qquad
3) $\cot (19 \pi / 3)$
d) $\cot (22 \pi / 3)$ \qquad
e) $\sec (13 \pi / 2)$ \qquad m) $\tan (-17 \pi)$
f) $\csc (-28 \pi)$ \qquad n) $\sin (47 \pi / 3)$
g) $\sin (41 \pi / 6)$
o) $\cos (-17 \pi / 6)$
h) $\cos (-7 \pi / 3)$
p) $\sin (-29 \pi / 4)$
\qquad

\qquad
\qquad

Graph the following functions on the graph below. Be sure to label your axes and identify the scale on each axis. Do all 3 in each question on the same set of axes.

2. $\mathrm{y}=\sqrt{x} \quad \mathrm{y}=-2 \sqrt{x} \quad \mathrm{y}=\sqrt{x}-3$										
			\uparrow							
										-
\square										

\qquad
3. $\mathbf{y}=\mathbf{2}^{x}$
$y=2^{x-3}$
$y=2^{x}+3$

					4										
					\downarrow										

4. $y=\log _{3}(x)$
$y=\log _{3}(x)+2$
$y=\log _{3}(x-2)$

																				T
																				-

\qquad
5. $y=\sin (x)$

$$
y=\cos (x)
$$

Graph from -2π to 2π. Use 6 BLOCKS $=\pi$ on the x -axis and 2 BLOCKS $=1$ on the y-axis. (If you use your calculator, be sure to put it in radian mode and use ZOOM TRIG for the window.)

										4										
-																				
-																				
																				\rightarrow
-																				
										\downarrow										-

