Summer Work Packet for MPH Math Classes

Students going into Pre-calculus Sept. 2022

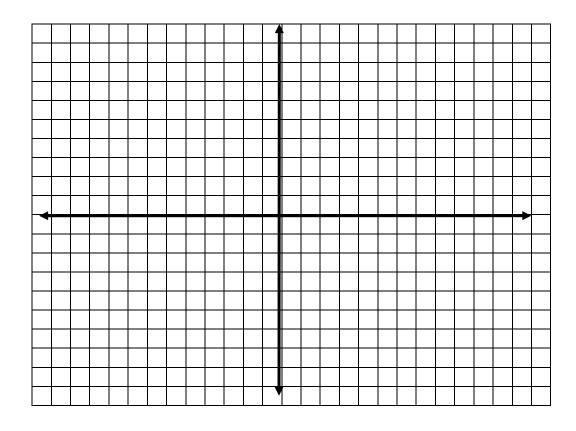
N	ame:				
---	------	--	--	--	--

This packet is designed to help students stay current with their math skills. Each math course expects a certain level of number sense, algebra sense, and graph sense in order to be successful in the course.

Complete these problems in the space provided by Monday, September 12th. Be sure to show all work. Doing 2 pages a week is a nice way to keep a good balance between keeping your math skills strong and enjoying summer fun.

Please email Mrs. Meehan at dmeehan@mphschool.org with any questions.

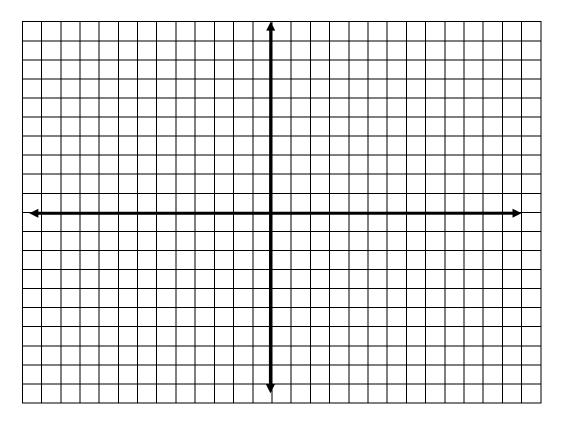
Linear Functions & Inequalities


1. Given: 3x - 2y = 6.

A. Find the <u>coordinates</u> of the x-intercept: _____ and y-intercept: _____.

B. Use the intercepts to calculate the slope. m = _____

C. Write the equation of a line parallel to the given line and going through the point (0, -1).


D. Graph both lines below.

2. Given: $m = -\frac{1}{2}$ and A (6, -3)

- A. Write the equation of the line in point-slope form: _____
- B. Write the equation of the line perpendicular to the given line going through the point (5, -3) in point-slope form.
- 3. Given: $(y + 4) = \frac{3}{4}(x 12)$
 - A. Name a point on the line. P (____, ___)
 - B. State the slope. m = _____
 - C. Find f(8) =____ and f(-4) =____.
- 4. **Graph** the inequalities. Name the **points of intersection**. **Label** the solution area. **Show your check** to verify the shaded area is correct.

$$y > \frac{2}{3}x - 1$$
 and $y \le -x + 1$ and $x > -6$

Solve for the variables using the <u>elimination</u> method. <u>Check</u>.

1.
$$6k + 3h = 15$$

 $5k + 9h = 19$

2.
$$a+4b+c=2$$

 $2a+b-2c=-10$
 $a+b+c=6$

Solve for the variables using the <u>substitution</u> method. <u>Check</u>.

3.
$$y = 3x - 20$$

 $11x - 2y = 125$

$$1.\,\frac{1+\sqrt[3]{(4x)}}{\sqrt[3]{2}+\sqrt[5]{x}}$$

$$2.\,\frac{a^{-2}-b^{-2}}{a+b}$$

$$3. \frac{28x^7y^4 - 16x^{12}y^{-4} + 24x^8y}{4x^5y}$$

Name

4.
$$\frac{(3y^2 - 108)(y^3 + 2y^2 - 24y)}{y(y^2 + 12y + 36)(3y^2 - 30y + 72)}$$
 (Leave your answer in factored form.)

5.
$$\frac{b^4 - 1}{b^3 - b^2 + b - 1}$$
 (Leave your answer in factored form.)

6.
$$\frac{ab^6c}{12} \div \frac{bc^3}{15} \cdot \frac{18abc}{5}$$

™ T		
Name		

7.
$$\frac{6m-18n}{9m+9n} \cdot \frac{4m-4n}{24n-8m}$$
 (Leave your answer in factored form.)

8.
$$\frac{6a^2+7a-3}{8a^2+14a+3} \div \frac{6a^2-11a+3}{8a^2-10a-3}$$
 (Leave your answer in factored form.)

9.
$$\frac{a^2b - 2ab^2}{a^2 + 2ab - 3b^2} \div \frac{a^2 + 6ab}{a^2 + 11ab - 12b^2} \div \frac{ab - 2b^2}{a^2 + 9ab + 18b^2}$$
 (Leave your answer in factored form.)

10.
$$\frac{5}{4x} + \frac{3}{6y}$$

Name _____

11.
$$\frac{x}{x+3} - \frac{1}{x^2-9}$$

12.
$$\frac{7}{d^2-100} + \frac{4}{d^2+11d+10}$$

$$13.\frac{7}{4x^2-1} - \frac{2}{1-2x} - \frac{3}{2x-1}$$

Algebra Review: Solve and check.

14.
$$w^2 + 9w + 8 = 0$$

15.
$$3b^3 + 13b = 7b^2$$

16.
$$2p^3 + p^2 - 8p - 4 = 0$$

17.
$$\frac{5}{h} + \frac{1}{2} = -2$$

18.
$$\frac{3}{c} - \frac{2}{c-1} = \frac{1}{c^2 - c}$$

$$19. \qquad \frac{5}{2c+6} - \frac{1-2c}{4c} = 2$$

20.
$$\frac{a}{a-3} + \frac{a^2}{a^2 - 7a + 12} = \frac{2a+1}{a-4}$$

Odd and Even Functions

Name _____

<u>Prove algebraically</u> that the function is odd, even or neither. Choosing a <u>numerical</u> value for x does **NOT** prove odd/even. It must be shown true for ALL values of x. Follow the example. Show your work.

Definition: f(x) is odd, if f(-x) = -f(x).

f(x) is **even,** if f(-x) = f(x).

Otherwise, the function is **neither** odd nor even.

Example: $f(x) = 4x^3 - 5x$

Find
$$f(-x)$$
: $f(-x) = 4(-x)^3 - 5(-x) = -4x^3 + 5x$. Thus, $f(-x) \neq f(x)$.

Find
$$-f(x)$$
: $-f(x) = -(4x^3 - 5x) = -4x^3 + 5x$. Thus, $-f(x) = f(-x)$ and the function is ODD.

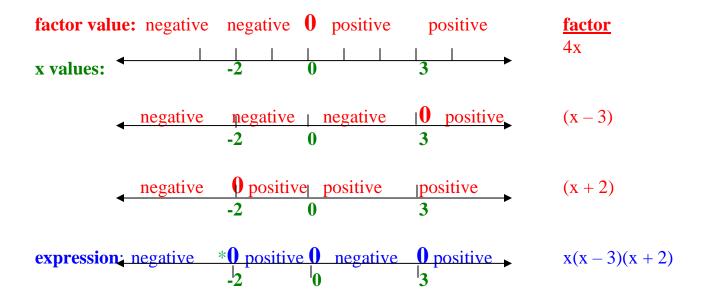
1.
$$f(x) = x^2 + 9$$

3.
$$f(x) = 5x^2 + \frac{1}{x^2}$$

2.
$$f(x) = (x - 8)^2$$

4.
$$f(x) = \frac{1}{8x}$$

Quadratic Inequalities and Sign Patterning


Name _____

Use the number lines to indicate the sign of each factor. From this, determine the intervals of x values which make the inequality true.

EXAMPLE 1:
$$4x^3 \ge 4x^2 + 24x$$

 $4x^3 - 4x^2 - 24x \ge 0$
 $4x(x^2 - x - 6) \ge 0$
 $4x(x - 3)(x + 2) \ge 0$

EXAMPLE 2:
$$\frac{4x(x-3)}{(x+2)} < 0$$

Use the same number lines because multiplication and division with negative numbers have the same rules.

Therefore, the solution set for Example 1 is $\{x \mid -2 \le x \le 0 \text{ or } x \ge 3\}$.

Therefore, the solution set for Example 2 is $\{x \mid x < -2 \text{ or } 0 < x < 3\}$. (Example 2 is undefined at x = -2.*)

- 1. Compare the expression to 0.
- 2. Factor.
- 3. Determine when each factor is 0, positive, and negative, and record the results on a number line.
- 4. Multiply/divided the intervals to determine the sign of the final expression.

Find the solution set using the <u>sign patterning</u> method. Graph the solution on a number line.

1.
$$w^2 - 5w < 0$$

4.
$$(9-p)(6-p)(7-p) > 0$$

2.
$$20 + c - c^2 \le 0$$

$$5. \qquad \frac{k}{4-k} < 0$$

$$3. \qquad 27x^3 \le 3x$$

$$6. \qquad \frac{g^2 + 3g - 28}{g - 1} < 0$$

1.
$$\log_4(x+1) = 3$$

4.
$$\log_5(x^2-4) = \log_5(3x)$$

2.
$$\log_3(x^2) = 5$$

5.
$$\log(x+1) + \log(x-2) = 1$$

3.
$$\log_5(x+2) = \log_5(4x-6)$$

To refresh about the UNIT CIRCLE and the trigonometry functions, you can explore the following websites (and many others that you can google). When you understand degrees, radians, positive/negative angles, the 6 functions and their relationship to a right triangle, then you should do the problems on the next page. Everything relates to the $45^{\circ}-45^{\circ}-90^{\circ}$ and $30^{\circ}-60^{\circ}-90^{\circ}$ right triangles and the relationship of their sides that you learned about in geometry.

TDICONOMETDY				
TRIGONOMETRY				
Amazing Unit circle				
http://mathmistakes.info/facts/TrigFacts/learn/uc/uc.html				
More Unit Circle				
http://www.mathsisfun.com/geometry/unit-circle.html				
Unit circle GAME				
http://www.mathwarehouse.com/unit-circle/unit-circle-game.php				
Colorful picture of entire unit circle				
http://www.analyzemath.com/unitcircle/special_angles.html				
Another full unit circle				
http://en.wikipedia.org/wiki/Image:Unit_circle_angles.svg				
Degrees to Radians Practice				
https://www.khanacademy.org/math/trigonometry/unit-circle-trig-				
<u>func/radians_tutorial/e/degrees_to_radians</u>				
Interactive Radian and Degree Practice with UNIT CIRLE				
http://goo.gl/epSfWQ				
More practice Degrees to Radians (multiple choice)				
http://www.ixl.com/math/algebra-2/convert-between-radians-and-degrees				
Video Tutorial with Right Triangle Applications				
http://www.youtube.com/watch?v=2gqRR1w71CE				
LINKS FOR GRAPHING TRIG FUNCTIONS:				
Graphing sine and cosine applets				
https://www.geogebra.org/m/znb4GNk7				
Desmos Unwrapping Unit Circle				
https://www.desmos.com/calculator/cpb0oammx7				
Unwrapping the Unit Circle				

http://www.analyzemath.com/unitcircle/unit_circle_applet.html

Convert the degrees to radians (leave π).

1.
$$450^{\circ} =$$

Convert the radians to degrees.

1.
$$\frac{6\pi}{5} =$$

$$2. -\frac{10\pi}{3} =$$

3.
$$\frac{21\pi}{4}$$
=_____

4.
$$\frac{31\pi}{6} =$$

Find an angle that is coterminal with the given angle.

1.
$$30^{\circ} =$$

3.
$$\frac{\pi}{4} =$$

4.
$$\frac{\pi}{2} =$$

Reference Angles & Trig Functions

1) Using the **unit circle**, give the <u>exact value</u> of each trigonometric expression. Pay attention to the sign of the answer (no calculator).

2) On the unit circle mark the letter of each problem in the correct angle position. Letter a is done for you.

i) $\tan(-19\pi/4)$

b) $\cos(5\pi/4)$ _____

j) $\sec(14\pi)$ _____

c) $\tan(11\pi/6)$

k) $\csc(13\pi/4)$

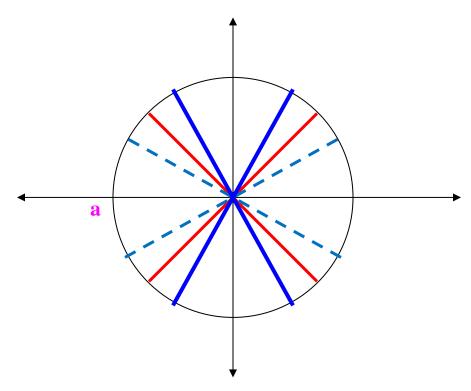
d) $\cot(22\pi/3)$

1) $\cot(19\pi/3)$

e) $\sec(13\pi/2)$ _____

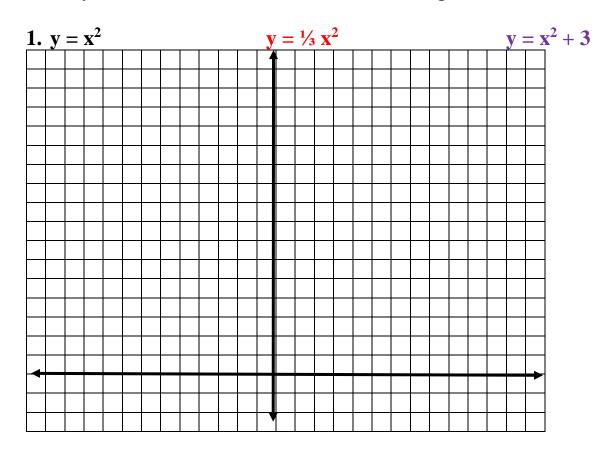
m) $tan(-17\pi)$ _____

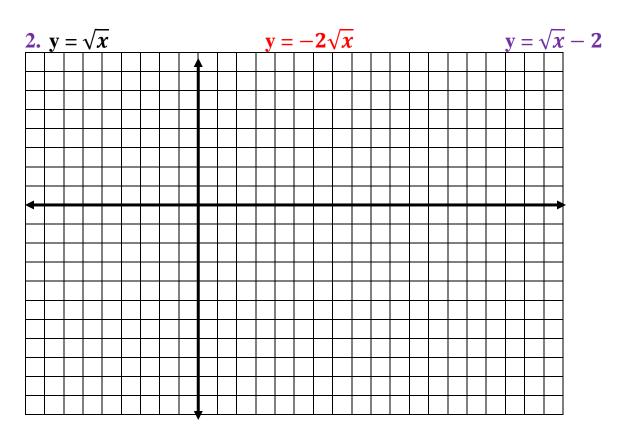
f) $\csc(-28\pi)$


n) $\sin(47\pi/3)$ _____

g) $\sin(41\pi/6)$ _____

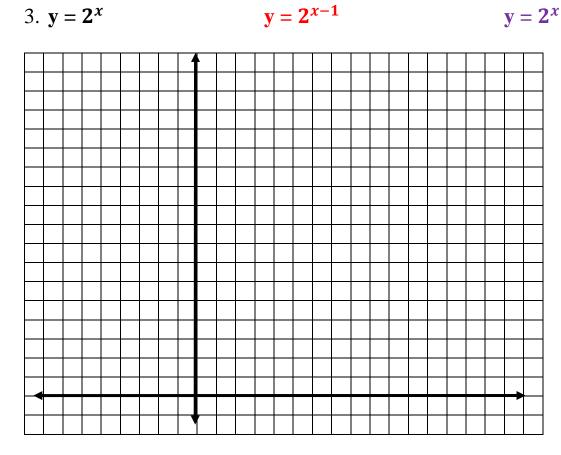
o) $\cos(-17\pi/6)$ _____


h) $\cos(-7\pi/3)$


p) $\sin(-29\pi/4)$ _____

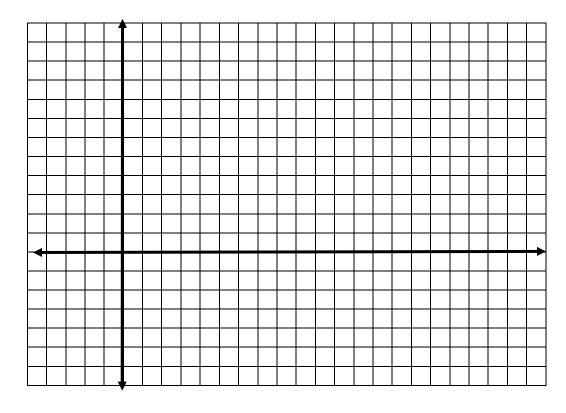
Graphing Functions

Graph the following functions on the graph below. Be sure to label your axes and identify the scale on each axis. Do all 3 in each question on the same set of axes.



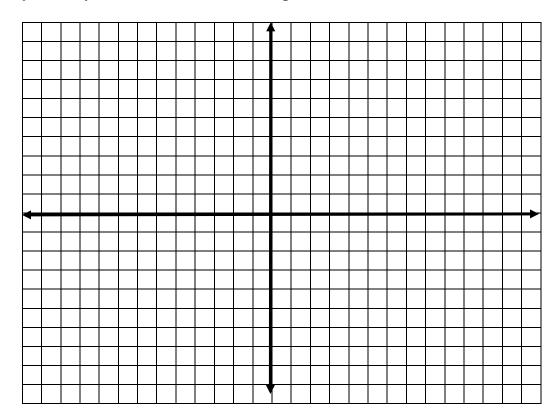
3.
$$y = 2^x$$

$$y = 2^{x-1}$$


$$y = 2^x + 1$$

4.
$$y = log_2(x)$$

4.
$$y = log_2(x)$$
 $y = log_2(x) + 3$ $y = log_2(x - 3)$


$$y = \log_2(x - 3)$$

Name		
· · · · · · · · · · · · · · · · · · · ·		

5.
$$y = \sin(x)$$
 $y = \cos(x)$

Graph from -2π to 2π . Use 6 BLOCKS = π on the x-axis and 2 BLOCKS = 1 on the y-axis. (If you use your calculator, be sure to put it in radian mode and use ZOOM TRIG for the window.)

